参与者 - 批评(AC)增强学习算法一直是许多具有挑战性的应用背后的强大力量。然而,它的收敛性一般都是脆弱的。为了研究其不稳定性,现有作品主要考虑具有有限状态和动作空间的罕见的双环变体或基本模型。我们研究了更实用的单样本两次尺度AC,用于解决规范线性二次调节器(LQR)问题,其中演员和评论家在每个迭代中仅在无界的连续状态和动作空间中使用单个迭代中的单个样本更新一次。现有的分析无法得出这样一个具有挑战性的情况的融合。我们开发了一个新的分析框架,该框架允许建立全局收敛到$ \ epsilon $ -optimal解决方案,最多最多是$ \ tilde {\ Mathcal {o}}}(\ epsilon^{ - 2.5})$样本复杂性。据我们所知,这是单个样本两次尺度AC的第一个有限时间收敛分析,用于以全球最优性求解LQR。样本复杂性通过订单改善了其他变体的复杂性,从而阐明了单个样品算法的实际智慧。我们还通过全面的模拟比较进一步验证了理论发现。
translated by 谷歌翻译
Benefiting from its single-photon sensitivity, single-photon avalanche diode (SPAD) array has been widely applied in various fields such as fluorescence lifetime imaging and quantum computing. However, large-scale high-fidelity single-photon imaging remains a big challenge, due to the complex hardware manufacture craft and heavy noise disturbance of SPAD arrays. In this work, we introduce deep learning into SPAD, enabling super-resolution single-photon imaging over an order of magnitude, with significant enhancement of bit depth and imaging quality. We first studied the complex photon flow model of SPAD electronics to accurately characterize multiple physical noise sources, and collected a real SPAD image dataset (64 $\times$ 32 pixels, 90 scenes, 10 different bit depth, 3 different illumination flux, 2790 images in total) to calibrate noise model parameters. With this real-world physical noise model, we for the first time synthesized a large-scale realistic single-photon image dataset (image pairs of 5 different resolutions with maximum megapixels, 17250 scenes, 10 different bit depth, 3 different illumination flux, 2.6 million images in total) for subsequent network training. To tackle the severe super-resolution challenge of SPAD inputs with low bit depth, low resolution, and heavy noise, we further built a deep transformer network with a content-adaptive self-attention mechanism and gated fusion modules, which can dig global contextual features to remove multi-source noise and extract full-frequency details. We applied the technique on a series of experiments including macroscopic and microscopic imaging, microfluidic inspection, and Fourier ptychography. The experiments validate the technique's state-of-the-art super-resolution SPAD imaging performance, with more than 5 dB superiority on PSNR compared to the existing methods.
translated by 谷歌翻译
Structural failures are often caused by catastrophic events such as earthquakes and winds. As a result, it is crucial to predict dynamic stress distributions during highly disruptive events in real time. Currently available high-fidelity methods, such as Finite Element Models (FEMs), suffer from their inherent high complexity. Therefore, to reduce computational cost while maintaining accuracy, a Physics Informed Neural Network (PINN), PINN-Stress model, is proposed to predict the entire sequence of stress distribution based on Finite Element simulations using a partial differential equation (PDE) solver. Using automatic differentiation, we embed a PDE into a deep neural network's loss function to incorporate information from measurements and PDEs. The PINN-Stress model can predict the sequence of stress distribution in almost real-time and can generalize better than the model without PINN.
translated by 谷歌翻译
We propose LiDAL, a novel active learning method for 3D LiDAR semantic segmentation by exploiting inter-frame uncertainty among LiDAR frames. Our core idea is that a well-trained model should generate robust results irrespective of viewpoints for scene scanning and thus the inconsistencies in model predictions across frames provide a very reliable measure of uncertainty for active sample selection. To implement this uncertainty measure, we introduce new inter-frame divergence and entropy formulations, which serve as the metrics for active selection. Moreover, we demonstrate additional performance gains by predicting and incorporating pseudo-labels, which are also selected using the proposed inter-frame uncertainty measure. Experimental results validate the effectiveness of LiDAL: we achieve 95% of the performance of fully supervised learning with less than 5% of annotations on the SemanticKITTI and nuScenes datasets, outperforming state-of-the-art active learning methods. Code release: https://github.com/hzykent/LiDAL.
translated by 谷歌翻译
在分布式机器学习实践中越来越受欢迎,在分布式机器学习实践中越来越受欢迎,在不共享本地数据的情况下,对算法进行了算法培训的联合学习。通常,图形结构$ g $存在于本地设备以进行通信。在这项工作中,我们考虑使用数据分布和通信异质性以及本地设备的计算能力有限的联合学习中的参数估计。我们通过在本地设备上参数化分布来编码分布异质性,并具有一组不同的$ p $维矢量。然后,我们建议在$ m $估算框架下与融合套索正则化的所有设备共同估计所有设备的参数,从而鼓励对$ g $中连接的设备上的参数进行平等估计。根据$ G $,我们可以为估计器提供一般结果,可以进一步校准以获得各种特定问题设置的收敛率。令人惊讶的是,我们的估计器在$ g $上的某些图保真度条件下达到了最佳率,就好像我们可以汇总所有共享相同分布的样本一样。如果未满足图形保真度条件,我们通过多次测试提出一个边缘选择过程,以确保最佳性。为了减轻本地计算的负担,提供了一个分散的随机版本的ADMM,收敛速率$ o(t^{ - 1} \ log t)$,其中$ t $表示迭代的数量。我们强调,我们的算法在每次迭代时仅沿$ g $的边缘传输参数,而无需保留隐私的中央机器。我们将其进一步扩展到在训练过程中随机无法接近设备的情况,并具有类似的算法收敛保证。模拟实验和2020年美国总统选举数据集证明了我们方法的计算和统计效率。
translated by 谷歌翻译
最近的作品显示了深度学习模型在词汇(IV)场景文本识别中的巨大成功。但是,在现实情况下,播音外(OOV)单词非常重要,SOTA识别模型通常在OOV设置上表现较差。受到直觉的启发,即学习的语言先验有限的OOV预言性,我们设计了一个名为Vision语言自适应相互解码器(VLAMD)的框架,以部分解决OOV问题。 VLAMD由三个主要谱系组成。首先,我们建立了一个基于注意力的LSTM解码器,具有两个适应性合并的仅视觉模块,可产生视觉平衡的主分支。其次,我们添加了一个基于辅助查询的自动回归变压器解码头,以进行通用的视觉和语言先验表示学习。最后,我们将这两种设计与双向培训相结合,以进行更多样化的语言建模,并进行相互的顺序解码以获得强烈的结果。我们的方法在IV+OOV和OOV设置上分别实现了70.31 \%和59.61 \%单词的准确性,分别在ECCV 2022 TIE TIE Workshop上的OOV-ST挑战的裁剪单词识别任务上,我们在这两个设置上都获得了第一名。
translated by 谷歌翻译
对复杂建筑环境的结构监测通常在设计,实验室测试和实际建筑参数之间遭受不匹配。此外,现实世界中的结构识别问题遇到了许多挑战。例如,缺乏准确的基线模型,高维度和复杂的多元部分微分方程(PDE)在训练和学习常规数据驱动算法方面遇到了重大困难。本文通过增强使用神经网络来控制结构动力学的PDE来探讨一个称为Neuralsi的新框架,以供结构识别。我们的方法试图从管理方程式估算非线性参数。我们考虑具有两个未知参数的非线性光束的振动,一个参数代表几何和材料变化,另一种代表主要通过阻尼捕获系统中的能量损失。参数估计的数据是从有限的一组测量值中获得的,这有利于在结构健康监测中的应用,其中通常未知现有结构的确切状态,并且只能在现场收集有限的数据样本。也可以使用已识别的结构参数在标准和极端条件下训练有素的模型。我们与纯数据驱动的神经网络和其他经典物理信息的神经网络(PINN)进行了比较。我们的方法将位移分布中的插值和外推误差降低了基线上的两到五个数量级。代码可从https://github.com/human-analysis/naural-scruptural-isendification获得。
translated by 谷歌翻译
以视觉为中心的BEV感知由于其固有的优点,最近受到行业和学术界的关注,包括展示世界自然代表和融合友好。随着深度学习的快速发展,已经提出了许多方法来解决以视觉为中心的BEV感知。但是,最近没有针对这个小说和不断发展的研究领域的调查。为了刺激其未来的研究,本文对以视觉为中心的BEV感知及其扩展进行了全面调查。它收集并组织了最近的知识,并对常用算法进行了系统的综述和摘要。它还为几项BEV感知任务提供了深入的分析和比较结果,从而促进了未来作品的比较并激发了未来的研究方向。此外,还讨论了经验实现细节并证明有利于相关算法的开发。
translated by 谷歌翻译
微调被广泛应用于图像分类任务中,作为转移学习方法。它重新使用源任务中的知识来学习和获得目标任务中的高性能。微调能够减轻培训数据不足和新数据昂贵标签的挑战。但是,标准微调在复杂的数据分布中的性能有限。为了解决这个问题,我们提出了适应性的多调整方法,该方法可适应地确定每个数据样本的微调策略。在此框架中,定义了多个微调设置和一个策略网络。适应性多调整中的策略网络可以动态地调整为最佳权重,以将不同的样本馈入使用不同的微调策略训练的模型。我们的方法的表现优于标准的微调方法1.69%,数据集FGVC-Aircraft和可描述的纹理优于2.79%,在Stanford Cars,CIFAR-10和时尚范围内产生可比的性能。
translated by 谷歌翻译
在本文中,我们提出了一个新的基于聚类的主动学习框架,即使用基于聚类的采样(ALCS)的主动学习,以解决标记数据的短缺。ALCS采用基于密度的聚类方法来探索数据集群结构,而无需详尽的参数调整。引入了基于双簇边界的样本查询过程,以提高对高度重叠类分类的学习绩效。此外,我们制定了一种有效的多样性探索策略,以解决查询样品之间的冗余。我们的实验结果证明了ALCS方法的疗效。
translated by 谷歌翻译